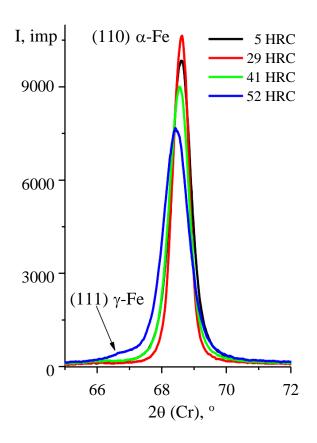


ДИФРЕЙ-401

РЕНТГЕНОВСКИЙ ДИФРАКТОМЕТР

Одна из возможностей использования настольного рентгеновского дифрактометра Дифрей-401 - неразрушающий рентгеноструктурный контроль металлов и сплавов:

- качественный и количественный фазовый анализ,
- определение параметров элементарной ячейки и размеров кристаллитов,
- анализ термической обработки стали,
- исследование состава диффузионных и поверхностных слоев,
- определения остаточных напряжений в металлах и сплавах.


Дифрей-401:

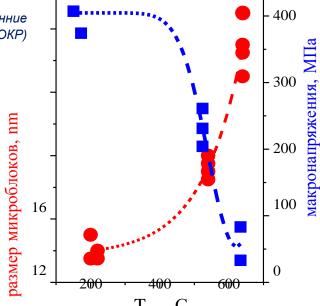
- отличается компактностью, удобством и простотой в эксплуатации;
- имеет большой набор приставок и прободержателей для разных типов объектов;
- освобожден от радиационного контроля;
- внесен в Госреестр средств измерений.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ							
Рентгенооптическая схема	Брэгга - Брентано						
Радиус гониометра, мм	114						
Полный диапазон измерений углов дифракции, 20°	0+154						
Тип детектора - Изогнутый позиционно – чувствительный	ипчд						
Диапазон одновременной регистрации спектра, град	43						
Тип рентгеновской трубки/Материал анода	БСВ-33/ Cr (Co, Cu, Fe, Mo)						
Диапазон регулирования параметров рентгеновской трубки	10 - 30 кВ; 1 - 6 мА						
Потребляемая прибором мощность/Питание	<500Вт / 220/50 В/Гц						
Габаритные размеры (ШхВхГ) / Масса, кг	600 x 615 x 430 мм/ 53 кг						

Контроль степени закалки мартенситной стали 40Х13

Прочностные свойства стали зависят от внутреннего структурно-напряженного состояния, изменяющегося в процессе термоциклического отжига или механической обработки.

Дифрактометр позволяет измерить остаточные напряжения в приповерхностном слое толщиной примерно 30 мкм и определить концентрацию остаточного аустенита.


Твердость, температура закалки (выдержка 50`) и размеры микроблоков стали 40X13

HRC	4	5	29	32	41	42	51	52
T, ∘C			640	640	540	540	220	200
OKP, nm	20	22	25	27	20	<u>19</u>	<u>15</u>	<u>14</u>

Дифрактограммы образца стали 40X13 до и после закалки.

Влияние температуры закалки 40X13 на внутренние макронапряжения (σ) и микроискажения (ОКР) кристаллической решетки а-фазы.

По истинному физическому уширению дифракционных максимумов, определяются микронапряжения II и III рода (кристаллитные), а по смещению дифракционных линий (т.е. по изменению параметра элементарной

ячейки) фиксируются и определяются остаточные напряжения I рода.